We study a new method for estimating the risk of an arbitrary estimator of the mean vector in the classical normal means problem. The key idea is to generate two auxiliary data vectors, by adding two carefully constructed normal noise vectors to the original data vector. We then train the estimator of interest on the first auxiliary data vector and test it on the second. In order to stabilize the estimate of risk, we average this procedure over multiple draws of the synthetic noise. A key aspect of this coupled bootstrap approach is that it delivers an unbiased estimate of risk under no assumptions on the estimator of the mean vector, albeit for a slightly "harder" version of the original normal means problem, where the noise variance is inflated. We show that, under the assumptions required for Stein's unbiased risk estimator (SURE), a limiting version of the coupled bootstrap estimator recovers SURE exactly (with an infinitesimal auxiliary noise variance and infinite bootstrap samples). We also analyze a bias-variance decomposition of the error of our risk estimator, to elucidate the effects of the variance of the auxiliary noise and the number of bootstrap samples on the accuracy of the risk estimator. Lastly, we demonstrate that our coupled bootstrap risk estimator performs quite favorably in simulated experiments and in an image denoising example.


翻译:我们研究一种新方法来估计古典正态方法问题中平均值矢量的任意估计风险。 关键的想法是生成两个辅助数据矢量, 在原始数据矢量中添加两个经过仔细构建的正常的正常噪声矢量。 然后我们训练第一个辅助数据矢量的利息天体, 然后在第二个数据矢量上测试它。 为了稳定风险估计, 我们用合成噪音的多重图示来测出这一程序。 这种组合式靴子捕捉方法的一个关键方面是, 它在对平均值矢量的假设中, 提供一种对风险的不偏差估计, 尽管对原始正常方法问题略微“ 更硬” 版本的“ 更硬” 表示, 噪音差异会膨胀。 我们表明, 在Stechin的不带偏见的风险估计器(SURE)的假设下, 一种限制型的靴子测算器测算器测得精确度, ( 加上极小的辅助噪声和无限的靴测样样本) 。 我们还分析我们风险测算误差的偏差, 解释辅助噪音测算器测算器测得的温度的精确度, 我们的试测算的底底底底底底镜样品的样品的样品的精确度。

0
下载
关闭预览

相关内容

专知会员服务
19+阅读 · 2021年3月18日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月21日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
19+阅读 · 2021年3月18日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员