A common setting for scientific inference is the ability to sample from a high-fidelity forward model (simulation) without having an explicit probability density of the data. We propose a simulation-based maximum likelihood deconvolution approach in this setting called OmniFold. Deep learning enables this approach to be naturally unbinned and (variable-, and) high-dimensional. In contrast to model parameter estimation, the goal of deconvolution is to remove detector distortions in order to enable a variety of down-stream inference tasks. Our approach is the deep learning generalization of the common Richardson-Lucy approach that is also called Iterative Bayesian Unfolding in particle physics. We show how OmniFold can not only remove detector distortions, but it can also account for noise processes and acceptance effects.
翻译:科学推理的一个常见环境是能够从高不洁的前方模型(模拟)中取样,而没有数据的明确概率密度。我们建议在这个名为OmniFold的环境下采用基于模拟的最大分解可能性的方法。深层次的学习使得这种方法能够自然地被分解和(可变的)高维。与模型参数估计相比,分解的目标是消除检测器扭曲,以便能进行各种下游推理任务。我们的方法是深入学习普通的Richardson-Lucy方法,该方法也称为粒子物理学中的迭代贝氏分解法。我们展示了OmniFold如何不仅能够清除检测器扭曲,而且还可以解释噪音过程和接受效果。