Weight sharing, as an approach to speed up architecture performance estimation has received wide attention. Instead of training each architecture separately, weight sharing builds a supernet that assembles all the architectures as its submodels. However, there has been debate over whether the NAS process actually benefits from weight sharing, due to the gap between supernet optimization and the objective of NAS. To further understand the effect of weight sharing on NAS, we conduct a comprehensive analysis on five search spaces, including NAS-Bench-101, NAS-Bench-201, DARTS-CIFAR10, DARTS-PTB, and ProxylessNAS. We find that weight sharing works well on some search spaces but fails on others. Taking a step forward, we further identified biases accounting for such phenomenon and the capacity of weight sharing. Our work is expected to inspire future NAS researchers to better leverage the power of weight sharing.


翻译:作为加快建筑绩效估计的一种方法,体重共享得到了广泛的关注。作为加快建筑绩效估计的一种方法,重量共享不是单独培训每个建筑,而是建立一个将所有建筑集合成其子型的超级网。然而,由于超级网络优化与NAS的目标之间存在差距,对NAS进程是否真正受益于重量共享进行了辩论。为了进一步理解重量共享对NAS的影响,我们对五个搜索空间进行了全面分析,包括NAS-Bench-101、NAS-Bench-201、NASS-Bench-201、DARSS-CIFAR10、DARSS-PTB和ProoxlessNAS。我们发现,重量共享在某些搜索空间运作良好,但在另一些搜索空间则失败。我们进一步确定了对这种现象和重量共享能力的偏差。我们的工作有望激励未来的NAS研究人员更好地利用重量共享的力量。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
60+阅读 · 2020年3月19日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
204+阅读 · 2020年1月13日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年1月28日
Arxiv
6+阅读 · 2020年10月8日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员