We present a novel 3D adaptive observer framework for use in the determination of subsurface organic tissue temperatures in electrosurgery. The observer structure leverages pointwise 2D surface temperature readings obtained from a real-time infrared thermographer for both parameter estimation and temperature field observation. We introduce a novel approach to decoupled parameter adaptation and estimation, wherein the parameter estimation can run in real-time, while the observer loop runs on a slower time scale. To achieve this, we introduce a novel parameter estimation method known as attention-based noise-robust averaging, in which surface thermography time series are used to directly estimate the tissue's diffusivity. Our observer contains a real-time parameter adaptation component based on this diffusivity adaptation law, as well as a Luenberger-type corrector based on the sensed surface temperature. In this work, we also present a novel model structure adapted to the setting of robotic surgery, wherein we model the electrosurgical heat distribution as a compactly supported magnitude- and velocity-controlled heat source involving a new nonlinear input mapping. We demonstrate satisfactory performance of the adaptive observer in simulation, using real-life experimental ex vivo porcine tissue data.
翻译:我们提出了一个新型的3D适应性观察员框架,用于确定电外科次表层有机组织温度。观察结构利用从实时红外线热测器获得的近距离2D表面温度读数,进行参数估计和温度实地观测。我们引入了一种新颖的分解参数调整和估计方法,其中参数估计可以实时运行,而观察环运行的时间尺度则较慢。为了实现这一点,我们引入了一种被称为“注意-噪音-机器人平均”的新颖参数估计方法,其中表面热量学时间序列用于直接估计组织 diffusical。我们的观察者含有基于此分流适应法的实时参数调整部分,以及基于感测表面温度的Luenberger型校正器。在这项工作中,我们还提出了一种适应机器人外科外科手术设置的新型模型结构,其中我们模拟了电子表面热分布,作为得到压缩支持的量和速度控制的热源,其中含有新的非线性投入绘图。我们展示了适应性观察者在模拟中采用真实生命实验性实验性组织模拟的令人满意的表现,我们使用了实际生命实验性实验性实验性VVI 。