We study estimation in the linear model $y=A\beta^\star+\epsilon$, in a Bayesian setting where $\beta^\star$ has an entrywise i.i.d. prior and the design $A$ is rotationally-invariant in law. In the large system limit as dimension and sample size increase proportionally, a set of related conjectures have been postulated for the asymptotic mutual information, Bayes-optimal mean squared error, and TAP mean-field equations that characterize the Bayes posterior mean of $\beta^\star$. In this work, we prove these conjectures for a general class of signal priors and for arbitrary rotationally-invariant designs $A$, under a "high-temperature" condition that restricts the range of eigenvalues of $A^\top A$. Our proof uses a conditional second-moment method argument, where we condition on the iterates of a version of the Vector AMP algorithm for solving the TAP mean-field equations.
翻译:我们研究线性模型$y=A\beta ⁇ star ⁇ estar epsilon$的估算,在巴伊西亚环境里,$\beta ⁇ star$有一个条目性i.d.d.之前和设计中$A$是法律上旋转的。在大系统范围内,尺寸和样本大小成比例增长的限制,已经假设了一组相关的假设,用于无症状的相互信息、Bayes-最优化平均正方位错误和TAP平均方程等式,这些方程是Bayes 后端值$\beta ⁇ star$的特征。在这项工作中,我们证明了用于一般信号前端和任意旋转变量设计的预测值$A$,这是在“高温度”条件下限制 $A ⁇ top A$的置值范围。我们的证据使用了一种有条件的二次移动方法参数,即我们用Vector AMP 算法的版本来解决TAP平均方位方程式等式。