项目名称: E3连接酶AtTR1在植物盐胁迫信号转导中的作用

项目编号: No.31300996

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 生物科学

项目作者: 刘志斌

作者单位: 四川大学

项目金额: 22万元

中文摘要: 随着土壤盐渍化的面积不段扩大,提高作物耐盐性对于农业的持续发展具有十分重要的社会意义。目前发现植物盐胁迫响应信号中Ca2+起重要的作用,但有关盐信号如何转换成钙信号的机制目前尚不清楚。本课题组前期在拟南芥中发现一个全新的E3连接酶AtTR1能够提高植物的耐盐性,进一步分析表明该蛋白能够调节钙通道的活性。这说明AtTR1可能在钙介导的盐胁迫信号转导中起作用。本项目首先从分子水平分析AtTR1受盐诱导的表达情况,以及AtTR1与盐胁迫信号通路中关键基因的关系;其次,分析AtTR1如何作用钙通道来调节细胞内钙浓度变化;第三,通过分裂泛素化酵母双杂交系统筛选与AtTR1相互作用蛋白,揭示AtTR1对钙通道的调控是直接还是间接。通过本项目的研究,有可能阐明盐胁迫信号与钙信号之间转换的机制,揭示AtTR1的耐盐作用机理。

中文关键词: 盐胁迫;钙离子;E3 连接酶;CPK3;泛素化修饰

英文摘要: With the expanding of soil salinization,how to improve crop salt tolerance for sustainable agriculture development, has significant roles in social aspect. The current study found that calcium ions is crucial for the salt stress response pathways. But it still remains unclear how the salt signal is converted into calcium signals. Our previous works revealed that a novel E3 ligase AtTR1 can enhance plant salt tolerance and regulate the activity of calcium channels. These results indicate that AtTR1 play a role in salt stress signal transduction mediated by calcium. Firstly,this project test the expression level of AtTR1 in response to salt stress, and the link between AtTR1 and those critical genes in salt stress response pathways as well; Secondly, We will analyze that how AtTR1 control the calcium channel. Thirdly, split ubiquitin yeast two-hybrid screening will be employed to confirm AtTR1-interacting protein, which can revealed the directly or indirectly regulatory role of AtTR1 on calcium channels. Based on this project, it is possible to clarify the conversion between salt stress signaling and calcium signaling, and will further reveal the mechanism of AtTR1 enhancing salt tolerance in plant。

英文关键词: salt stress;Calcium ion;E3 ligase;CPK3;Ubiquitination

成为VIP会员查看完整内容
0

相关内容

《人工智能在无人机中的应用》报告,60页pdf
专知会员服务
152+阅读 · 2022年3月30日
【ACL 2021 】ExCAR: 事理图谱增强的可解释因果推理
专知会员服务
46+阅读 · 2021年11月10日
边缘机器学习,21页ppt
专知会员服务
81+阅读 · 2021年6月21日
【Yoshua Bengio】走向因果表示学习,附论文、视频与72页ppt
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
专知会员服务
144+阅读 · 2021年2月3日
【MIT】理解深度学习网络里单个神经元的作用
专知会员服务
28+阅读 · 2020年9月12日
已删除
将门创投
14+阅读 · 2019年5月29日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年5月2日
Arxiv
0+阅读 · 2022年4月29日
小贴士
相关主题
相关VIP内容
《人工智能在无人机中的应用》报告,60页pdf
专知会员服务
152+阅读 · 2022年3月30日
【ACL 2021 】ExCAR: 事理图谱增强的可解释因果推理
专知会员服务
46+阅读 · 2021年11月10日
边缘机器学习,21页ppt
专知会员服务
81+阅读 · 2021年6月21日
【Yoshua Bengio】走向因果表示学习,附论文、视频与72页ppt
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
专知会员服务
144+阅读 · 2021年2月3日
【MIT】理解深度学习网络里单个神经元的作用
专知会员服务
28+阅读 · 2020年9月12日
相关资讯
已删除
将门创投
14+阅读 · 2019年5月29日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
相关基金
微信扫码咨询专知VIP会员