We present a framework for speeding up the time it takes to sample from discrete distributions $\mu$ defined over subsets of size $k$ of a ground set of $n$ elements, in the regime $k\ll n$. We show that having estimates of marginals $\mathbb{P}_{S\sim \mu}[i\in S]$, the task of sampling from $\mu$ can be reduced to sampling from distributions $\nu$ supported on size $k$ subsets of a ground set of only $n^{1-\alpha}\cdot \operatorname{poly}(k)$ elements. Here, $1/\alpha\in [1, k]$ is the parameter of entropic independence for $\mu$. Further, the sparsified distributions $\nu$ are obtained by applying a sparse (mostly $0$) external field to $\mu$, an operation that often retains algorithmic tractability of sampling from $\nu$. This phenomenon, which we dub domain sparsification, allows us to pay a one-time cost of estimating the marginals of $\mu$, and in return reduce the amortized cost needed to produce many samples from the distribution $\mu$, as is often needed in upstream tasks such as counting and inference. For a wide range of distributions where $\alpha=\Omega(1)$, our result reduces the domain size, and as a corollary, the cost-per-sample, by a $\operatorname{poly}(n)$ factor. Examples include monomers in a monomer-dimer system, non-symmetric determinantal point processes, and partition-constrained Strongly Rayleigh measures. Our work significantly extends the reach of prior work of Anari and Derezi\'nski who obtained domain sparsification for distributions with a log-concave generating polynomial (corresponding to $\alpha=1$). As a corollary of our new analysis techniques, we also obtain a less stringent requirement on the accuracy of marginal estimates even for the case of log-concave polynomials; roughly speaking, we show that constant-factor approximation is enough for domain sparsification, improving over $O(1/k)$ relative error established in prior work.


翻译:我们提出了一个加速时间的框架, 用于从离散分配中提取 $\ mu$ 的样本, 在制度中 $k\ 美元, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 以美元为基数, 计算一个基数, 计算一个基数, 。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年8月20日
专知会员服务
42+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Distributed Learning with Dependent Samples
Arxiv
0+阅读 · 2021年11月4日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员