Based on the covert communication framework, we consider a covert queueing problem that has a Markovian statistic. Willie jobs arrive according to a Poisson process and require service from server Bob. Bob does not have a queue for jobs to wait and hence when the server is busy, arriving Willie jobs are lost. Willie and Bob enter a contract under which Bob should only serve Willie jobs. As part of the usage statistic, for a sequence of N consecutive jobs that arrived, Bob informs Willie whether each job was served or lost (this is the Markovian statistic). Bob is assumed to be violating the contract and admitting non-Willie (Nillie) jobs according to a Poisson process. For such a setting, we identify the hypothesis testing to be performed (given the Markovian data) by Willie to detect the presence or absence of Nillie jobs. We also characterize the upper bound on arrival rate of Nillie jobs such that the error in the hypothesis testing of Willie is arbitrarily large, ensuring covertness in admitting Nillie jobs.
翻译:基于隐蔽的通信框架, 我们考虑了一个隐蔽的排队问题, 它包含一个 Markovian 统计 。 威利的工作按照 Poisson 程序到达, 需要服务器 Bob 的服务 。 鲍勃没有排队等待工作, 因此当服务器繁忙时, 找不到威利的工作 。 威利 和 Bob 签订了一份合同, Bob 只能为威利 的工作服务。 作为使用统计的一部分, 到达的连续工作序列, Bob 通知威利, 每个工作是否都得到服务( 这是 Markovian 统计 ) 。 鲍勃 被假定违反合同, 并接受非威利( Nilie) 的工作 。 对于这样的设置, 我们确定要由威利进行的假设测试( 给 Markovian 数据 ) 来检测 Nillie 工作的存在或不存在 。 我们还将 Nillie 工作到达率的上限定义为威利 的假设测试中的错误是任意的, 确保接受 Nillie 工作是隐秘 。