In this paper, we present a motion planning framework for multi-modal vehicle dynamics. Our proposed algorithm employs transcription of the optimization objective function, vehicle dynamics, and state and control constraints into sparse factor graphs, which -- combined with mode transition constraints -- constitute a composite pose graph. By formulating the multi-modal motion planning problem in composite pose graph form, we enable utilization of efficient techniques for optimization on sparse graphs, such as those widely applied in dual estimation problems, e.g., simultaneous localization and mapping (SLAM). The resulting motion planning algorithm optimizes the multi-modal trajectory, including the location of mode transitions, and is guided by the pose graph optimization process to eliminate unnecessary transitions, enabling efficient discovery of optimized mode sequences from rough initial guesses. We demonstrate multi-modal trajectory optimization in both simulation and real-world experiments for vehicles with various dynamics models, such as an airplane with taxi and flight modes, and a vertical take-off and landing (VTOL) fixed-wing aircraft that transitions between hover and horizontal flight modes.
翻译:在本文中,我们提出了一个多模式车辆动态动态的动态规划框架。我们的拟议算法将优化目标功能、车辆动态以及状态和控制限制转换成稀有要素图,这与模式过渡制约相结合,构成一个复合的组合式图。通过以复合面图形式绘制多模式运动规划问题,我们得以利用高效技术优化稀薄图,如广泛用于双重估算问题(如同时定位和绘图)的稀薄图。由此产生的动作规划算法优化了多模式轨迹,包括模式过渡的位置,并遵循成形图优化进程,以消除不必要的过渡,从而能够有效地发现粗略的猜测中的最佳模式序列。我们展示了模拟和现实世界对具有各种动态模型的车辆的多模式轨迹优化,如具有出租车和飞行模式的飞机,以及从悬浮式和水平飞行模式之间转换的垂直起飞和着陆(VTOL)固定翼飞机。