Building object-level maps can facilitate robot-environment interactions (e.g. planning and manipulation), but objects could often have multiple probable poses when viewed from a single vantage point, due to symmetry, occlusion or perceptual failures. A robust object-level simultaneous localization and mapping (object SLAM) algorithm needs to be aware of this pose ambiguity. We propose to maintain and subsequently disambiguate the multiple pose interpretations to gradually recover a globally consistent world representation. The max-mixtures model is applied to implicitly and efficiently track all pose hypotheses, but the resulting formulation is non-convex, and therefore subject to local optima. To mitigate this problem, temporally consistent hypotheses are extracted, guiding the optimization into the global optimum. This consensus-informed inference method is applied online via landmark variable re-initialization within an incremental SLAM framework, iSAM2, for robust real-time performance. We demonstrate that this approach improves SLAM performance on both simulated and real object SLAM problems with pose ambiguity.
翻译:建筑目标级地图可以促进机器人与环境的相互作用(例如规划和操纵),但是,由于对称性、隔离性或感知性失灵,从单一的有利点看,物体往往可能具有多种可能的成份。强大的物体级同步本地化和绘图算法(目标SLAM)需要意识到这一点,这会造成模糊不清。我们提议保持并随后模糊多种成份解释,以逐步恢复全球一致的世界代表性。最大混合模型用于暗中和有效地跟踪所有表面假设,但由此产生的配方是非凝固的,因此受本地选择的制约。为了缓解这一问题,将时间一致的假设提取出来,引导优化到全球最佳状态。这种共识知情推论方法通过一个渐进的SLAM框架(iSAM2)的里程碑性变量重新定位在线应用,以稳健的实时性表现。我们证明,这一方法提高了SLAMM在模拟和真实对象的SLM问题上的性能,造成模糊性。