In EUROCRYPT 2018, Cid $et\;al.$ introduced a new concept on the cryptographic property of S-boxes to evaluate the subtleties of boomerang-style attacks. This concept was named as boomerang connectivity table (BCT for short) . For a power function, the distribution of BCT can be directly determined by its boomerang spectrum. In this paper, we investigate the boomerang spectra of two classes power functions over even characteristic finite fields via their differential spectra. The boomerang spectrum of the power function $ {x^{{2^{m+1}} - 1}} $ over $ {\mathbb{F}_{{2^{2m}}}} $ is determined, where $2^{m+1}-1$ is a kind of Niho exponent. The boomerang spectrum of the Gold function $G(x)=x^{2^t+1}$ over $ {\mathbb{F}_{{2^n}}} $ is also determined. It is shown that the Gold function has two-valued boomerang spectrum.
翻译:在EUROCRYPT 2018, Cid $et\; al.$ 中, Sbox 的加密属性引入了一个新的概念, 以评价旋翼式攻击的微妙性。 这个概念被命名为 旋翼连通表 。 对于一个功率函数, BCT 的分布可以直接由 其旋翼频谱决定 。 在本文中, 我们调查两个级的旋翼光谱, 通过其差分光谱, 等同的特性有限域。 电函数 $ {x ⁇ 2 ⁇ m+1 ⁇ - 1 ⁇ $+$ $+mathbb{F ⁇ 2 ⁇ 2⁄ $ 美元以上 被确定为 2 ⁇ +$ 美元 。 其中 2 ⁇ +$ 是一种 Niho Exponent 。 金函数 $(x) =xx =x ⁇ 2 ⁇ t+1} 美元以上 的旋翼频谱也被确定 。 显示, 黄金功能有两值的旋带 。