The modular decomposition of a graph $G$ is a natural construction to capture key features of $G$ in terms of a labeled tree $(T,t)$ whose vertices are labeled as "series" ($1$), "parallel" ($0$) or "prime". However, full information of $G$ is provided by its modular decomposition tree $(T,t)$ only, if $G$ is a cograph, i.e., $G$ does not contain prime modules. In this case, $(T,t)$ explains $G$, i.e., $\{x,y\}\in E(G)$ if and only if the lowest common ancestor $\mathrm{lca}_T(x,y)$ of $x$ and $y$ has label "$1$". Pseudo-cographs, or, more general, GaTEx graphs $G$ are graphs that can be explained by labeled galled-trees, i.e., labeled networks $(N,t)$ that are obtained from the modular decomposition tree $(T,t)$ of $G$ by replacing the prime vertices in $T$ by simple labeled cycles. GaTEx graphs can be recognized and labeled galled-trees that explain these graphs can be constructed in linear time. In this contribution, we provide a novel characterization of GaTEx graphs in terms of a set $\mathfrak{F}_{\mathrm{GT}}$ of 25 forbidden induced subgraphs. This characterization, in turn, allows us to show that GaTEx graphs are closely related to many other well-known graph classes such as $P_4$-sparse and $P_4$-reducible graphs, weakly-chordal graphs, perfect graphs with perfect order, comparability and permutation graphs, murky graphs as well as interval graphs, Meyniel graphs or very strongly-perfect and brittle graphs.


翻译:图形 G$ 的模块化分解 $G 美元是一种自然构造, 用来捕捉 $G$ 的关键特征 。 在这种情况下, $( T, t) 代表$G$, 其脊椎标签为“ 系列” ($) 、“ 平行” (0美元) 或“ 纯 ” 。 然而, $ G$ 的全部信息仅由其模块式分解树 $( T, t) 提供。 如果 $ G$ 是一个cograph, 即 $G$ 不包含原始模块 。 在这种情况下, $( T, t) 代表$ GG$, 则表示 Exqolt, 以“ 常规” (美元) 平面图中, 也可以以“ 美元” 平面图中, 以“ 平面” 平面图中, 以“ 美元” 平面图中, 以“ 美元 美元 ” 和“ 平面纸 ” 表示 。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月1日
Arxiv
0+阅读 · 2023年1月30日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员