This paper introduces a new robust interior point method analysis for semidefinite programming (SDP). This new robust analysis can be combined with either logarithmic barrier or hybrid barrier. Under this new framework, we can improve the running time of semidefinite programming (SDP) with variable size $n \times n$ and $m$ constraints up to $\epsilon$ accuracy. We show that for the case $m = \Omega(n^2)$, we can solve SDPs in $m^{\omega}$ time. This suggests solving SDP is nearly as fast as solving the linear system with equal number of variables and constraints. This is the first result that tall dense SDP can be solved in the nearly-optimal running time, and it also improves the state-of-the-art SDP solver [Jiang, Kathuria, Lee, Padmanabhan and Song, FOCS 2020]. In addition to our new IPM analysis, we also propose a number of techniques that might be of further interest, such as, maintaining the inverse of a Kronecker product using lazy updates, a general amortization scheme for positive semidefinite matrices.
翻译:本文为半限定程序( SDP) 引入了新的强势内分点方法分析。 这一新强势分析可以与对数屏障或混合屏障相结合。 在这个新框架下, 我们可以改善半限定程序(SDP)的运行时间, 其规模可变, 以美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 以美元计, 解决 SDP 。 这表明 SDP 的解决速度快于以等量变量和制约解决线性系统。 这是第一个结果, 高密度的密度 SDP 程序可以在近最佳运行时间解决, 也改善了SDP 的状态[Jiang, Kathuria, Lee, Padmanabhan 和 Song, FOCS 2020] 。 除了我们的新IPM 分析外, 我们还提出了一些可能更感兴趣的技术, 例如, 使用迷幻剂模型来维持半定质模型的反向。