This paper introduces a new robust interior point method analysis for semidefinite programming (SDP). This new robust analysis can be combined with either logarithmic barrier or hybrid barrier. Under this new framework, we can improve the running time of semidefinite programming (SDP) with variable size $n \times n$ and $m$ constraints up to $\epsilon$ accuracy. We show that for the case $m = \Omega(n^2)$, we can solve SDPs in $m^{\omega}$ time. This suggests solving SDP is nearly as fast as solving the linear system with equal number of variables and constraints. This is the first result that tall dense SDP can be solved in the nearly-optimal running time, and it also improves the state-of-the-art SDP solver [Jiang, Kathuria, Lee, Padmanabhan and Song, FOCS 2020]. In addition to our new IPM analysis, we also propose a number of techniques that might be of further interest, such as, maintaining the inverse of a Kronecker product using lazy updates, a general amortization scheme for positive semidefinite matrices.


翻译:本文为半限定程序( SDP) 引入了新的强势内分点方法分析。 这一新强势分析可以与对数屏障或混合屏障相结合。 在这个新框架下, 我们可以改善半限定程序(SDP)的运行时间, 其规模可变, 以美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 美元计, 以美元计, 解决 SDP 。 这表明 SDP 的解决速度快于以等量变量和制约解决线性系统。 这是第一个结果, 高密度的密度 SDP 程序可以在近最佳运行时间解决, 也改善了SDP 的状态[Jiang, Kathuria, Lee, Padmanabhan 和 Song, FOCS 2020] 。 除了我们的新IPM 分析外, 我们还提出了一些可能更感兴趣的技术, 例如, 使用迷幻剂模型来维持半定质模型的反向。

0
下载
关闭预览

相关内容

信息处理和管理(IPM)在计算机与信息科学的交叉点上发布了有关领域,包括但不限于商业、市场营销、广告、社交计算和信息技术等领域的理论、方法或应用的前沿研究。该杂志的目的是通过为及时传播高级和热门问题提供有效的论坛,从而在计算机与信息科学的交叉点上增进研究人员和从业人员的利益。该期刊对原始研究文章、研究调查文章、研究方法文章以及涉及研究关键应用的文章特别感兴趣。官网地址:http://dblp.uni-trier.de/db/journals/ipm/
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员