We study the problem of estimating the size of maximum matching and minimum vertex cover in sublinear time. Denoting the number of vertices by $n$ and the average degree in the graph by $\bar{d}$, we obtain the following results for both problems: * A multiplicative $(2+\epsilon)$-approximation that takes $\tilde{O}(n/\epsilon^2)$ time using adjacency list queries. * A multiplicative-additive $(2, \epsilon n)$-approximation in $\tilde{O}((\bar{d} + 1)/\epsilon^2)$ time using adjacency list queries. * A multiplicative-additive $(2, \epsilon n)$-approximation in $\tilde{O}(n/\epsilon^{3})$ time using adjacency matrix queries. All three results are provably time-optimal up to polylogarithmic factors culminating a long line of work on these problems. Our main contribution and the key ingredient leading to the bounds above is a new and near-tight analysis of the average query complexity of the randomized greedy maximal matching algorithm which improves upon a seminal result of Yoshida, Yamamoto, and Ito [STOC'09].
翻译:在亚线性时间里, 我们研究估算最大匹配和最小顶端覆盖的大小问题。 注意以美元计的脊椎数量和以美元表示的平均度, 我们从这两个问题上都取得了以下结果 : * 多倍化的 $ (2 ⁇ epsilon) $- accolomimation, 需要$\ tilde{O} (n/\ epsilon}2) 美元, 使用对称列表查询 。 * 多倍增的 adplitive- addivive $ (2), \ epsilon n) $- 的接近于 $ tilde{O} ((\\ { { { { +1) ) /\ epsilon2) 的平均度, 使用对匹配列表查询的时间 : * 多倍增倍增的 $( 2) $\, \ tilde{ O} (n/ silon=3} $ 美元, 用对匹配性矩阵查询。 所有三个结果都接近于时间- provyal-opimal- palimaltialal adal adlogyal