Sparse eigenproblems are important for various applications in computer graphics. The spectrum and eigenfunctions of the Laplace--Beltrami operator, for example, are fundamental for methods in shape analysis and mesh processing. The Subspace Iteration Method is a robust solver for these problems. In practice, however, Lanczos schemes are often faster. In this paper, we introduce the Hierarchical Subspace Iteration Method (HSIM), a novel solver for sparse eigenproblems that operates on a hierarchy of nested vector spaces. The hierarchy is constructed such that on the coarsest space all eigenpairs can be computed with a dense eigensolver. HSIM uses these eigenpairs as initialization and iterates from coarse to fine over the hierarchy. On each level, subspace iterations, initialized with the solution from the previous level, are used to approximate the eigenpairs. This approach substantially reduces the number of iterations needed on the finest grid compared to the non-hierarchical Subspace Iteration Method. Our experiments show that HSIM can solve Laplace--Beltrami eigenproblems on meshes faster than state-of-the-art methods based on Lanczos iterations, preconditioned conjugate gradients and subspace iterations.
翻译:在计算机图形中, Splace- Beltrami 操作器的频谱和元功能对于形状分析和网状处理方法至关重要。 子空间迭代法是解决这些问题的强有力解答器。 然而, 在实际操作中, Lanczos 方案往往比较快。 在本文中, 我们引入了“ 高压次空间循环法 ” (HSIM), 这是在嵌入式矢量空间的层次上操作的稀疏的源数的新型解析器。 结构结构在 粗皮空间中构建的, 并且所有egenpair 都可以用浓厚的易碎石质解析法计算。 HSIM 使用这些egenpair 方法作为初始化, 并且从结构的粗糙到细的循环。 在每种级别上, 与先前水平的解析方法一起, 用于接近 igenpailpropairs 。 这个方法大大降低了在精密的网格中所需的迭代数, 而不是在非迭基层的流层的解层前置方法上, 我们的解解的解方法展示了基于 HIM- 的解方法。