In the framework of inverse linear problems on infinite-dimensional Hilbert space, we prove the convergence of the conjugate gradient iterates to an exact solution to the inverse problem in the most general case where the self-adjoint, non-negative operator is unbounded and with minimal, technically unavoidable assumptions on the initial guess of the iterative algorithm. The convergence is proved to always hold in the Hilbert space norm (error convergence), as well as at other levels of regularity (energy norm, residual, etc.) depending on the regularity of the iterates. We also discuss, both analytically and through a selection of numerical tests, the main features and differences of our convergence result as compared to the case, already available in the literature, where the operator is bounded.


翻译:在无限维度希尔伯特空间的反线性问题的框架内,我们证明,在最一般的情况下,自我联合、非消极操作者不受约束,对迭代算法的最初猜测有最低、技术上不可避免的假设,在最普遍的情况下,同梯度交错与反向问题的确切解决办法相趋同;在Hilbert空间规范(高度趋同)中,以及根据迭代国的规律性(能源规范、剩余物等)中,这种趋同始终是相同的。 我们还通过分析和选择数字测试,讨论我们趋同结果的主要特点和与文献中已有的案例(即经营者受约束的情况)相比的差异。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月20日
Arxiv
0+阅读 · 2022年1月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员