This letter proposes an improved CNN predictor (ICNNP) for reversible data hiding (RDH) in images, which consists of a feature extraction module, a pixel prediction module, and a complexity prediction module. Due to predicting the complexity of each pixel with the ICNNP during the embedding process, the proposed method can achieve superior performance than the CNN predictor-based method. Specifically, an input image does be first split into two different sub-images, i.e., the "Dot" image and the "Cross" image. Meanwhile, each sub-image is applied to predict another one. Then, the prediction errors of pixels are sorted with the predicted pixel complexities. In light of this, some sorted prediction errors with less complexity are selected to be efficiently used for low-distortion data embedding with a traditional histogram shift scheme. Experimental results demonstrate that the proposed method can achieve better embedding performance than that of the CNN predictor with the same histogram shifting strategy.
翻译:此信建议改进CNN 预测器( ICNNP), 用于图像中可逆数据隐藏( RDH) 的可逆数据。 该预测器由特性提取模块、 像素预测模块和复杂预测模块组成。 由于在嵌入过程中预测每个像素与 ICNNP 的复杂程度, 拟议的方法可以实现优于CNN 预测器所用方法的功能。 具体地说, 输入图像可以首先分为两种不同的子图像, 即“ Dot” 图像和“ Cross” 图像。 同时, 每个子图像应用来预测另一个图像。 然后, 像素的预测误差会与预测的像素复杂性进行分类。 有鉴于此, 选择了一些复杂程度较低的分类错误, 以便有效地用于低扭曲数据嵌入传统的直方图转换方案。 实验结果显示, 拟议的方法可以比CNN CNN 预测器的预测器和相同的直方图转换策略更好地嵌入性。