With the rise of deep learning algorithms nowadays, scene image representation methods on big data (e.g., SUN-397) have achieved a significant performance boost in classification. However, the performance is still limited because the scene images are mostly complex in nature having higher intra-class dissimilarity and inter-class similarity problems. To deal with such problems, there are several methods proposed in the literature with their own advantages and limitations. A detailed study of previous works is necessary to understand their pros and cons in image representation and classification. In this paper, we review the existing scene image representation methods that are being used widely for image classification. For this, we, first, devise the taxonomy using the seminal existing methods proposed in the literature to this date. Next, we compare their performance both qualitatively (e.g., quality of outputs, pros/cons, etc.) and quantitatively (e.g., accuracy). Last, we speculate the prominent research directions in scene image representation tasks. Overall, this survey provides in-depth insights and applications of recent scene image representation methods for traditional Computer Vision (CV)-based methods, Deep Learning (DL)-based methods, and Search Engine (SE)-based methods.


翻译:随着当今深层次学习算法的崛起,海量数据(例如,SUN-397)的现场图像展示方法(例如,SUN-397)在分类方面实现了显著的绩效提升,但业绩仍然有限,因为场景图像在性质上极为复杂,具有较高的阶级内部差异和不同类别之间的相似问题。为了处理这些问题,文献中提出了几种方法,这些方法本身具有优势和局限性。最后,我们有必要详细研究以往的工作,以了解其在图像展示和分类方面的利弊。在本文件中,我们审查了目前广泛用于图像分类的现有场景图像展示方法。为此,我们首先利用文献中迄今建议的原始现有方法来设计分类学。接下来,我们比较其性能(例如,产出的质量、赞成/同意等)和定量(例如,准确性)。最后,我们推测了现场图像展示任务中突出的研究方向。总体而言,本项调查为基于计算机视觉(CV)方法、深层学习(DL)方法、基于搜索的方法和搜索(DL)方法(DSEAR-SE)的近期现场图像展示展示展示方法提供了深入的洞见和应用。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
29+阅读 · 2022年3月28日
Arxiv
11+阅读 · 2021年3月25日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员