Deep convolutional neural networks require large amounts of labeled data samples. For many real-world applications, this is a major limitation which is commonly treated by augmentation methods. In this work, we address the problem of learning deep neural networks on small datasets. Our proposed architecture called ChimeraMix learns a data augmentation by generating compositions of instances. The generative model encodes images in pairs, combines the features guided by a mask, and creates new samples. For evaluation, all methods are trained from scratch without any additional data. Several experiments on benchmark datasets, e.g. ciFAIR-10, STL-10, and ciFAIR-100, demonstrate the superior performance of ChimeraMix compared to current state-of-the-art methods for classification on small datasets.
翻译:深相神经网络需要大量贴有标签的数据样本。 对于许多现实世界应用来说,这是一个主要的限制,通常通过扩增方法加以处理。 在这项工作中,我们解决了在小数据集上学习深神经网络的问题。我们提议的称为ChimeraMix的架构通过生成实例的构成来学习数据增强。基因模型将图像编码成对,将面具引导的特征结合在一起,并创建新的样本。为了评估,所有方法都是从零开始训练的,没有任何额外数据。关于基准数据集的几项实验,例如,CIFAIR-10、STL-10和ciFAIR-100, 显示了ChimeraMix相对于目前小数据集最新分类方法的优异性表现。