In this paper we present an approach to reduce hallucinations in Large Language Models (LLMs) by incorporating Knowledge Graphs (KGs) as an additional modality. Our method involves transforming input text into a set of KG embeddings and using an adapter to integrate these embeddings into the language model space, without relying on external retrieval processes. To facilitate this, we created WikiEntities, a dataset containing over 3 million Wikipedia texts annotated with entities from Wikidata and their corresponding embeddings from PyTorch-BigGraph. This dataset serves as a valuable resource for training Entity Linking models and adapting the described method to various LLMs using specialized adapters. Our method does not require fine-tuning of the language models themselves; instead, we only train the adapter. This ensures that the model's performance on other tasks is not affected. We trained an adapter for the Mistral 7B, LLaMA 2-7B (chat), and LLaMA 3-8B (instruct) models using this dataset and demonstrated that our approach improves performance on the HaluEval, True-False benchmarks and FEVER dataset. The results indicate that incorporating KGs as a new modality can effectively reduce hallucinations and improve the factual accuracy of language models, all without the need for external retrieval.
翻译:暂无翻译