This paper proposes a Clustering, Labeling, then Augmenting framework that significantly enhances performance in Semi-Supervised Text Classification (SSTC) tasks, effectively addressing the challenge of vast datasets with limited labeled examples. Unlike traditional SSTC approaches that rely on a predefined small set of labeled data to generate pseudo-labels for the unlabeled data, this framework innovatively employs clustering to select representative "landmarks" for labeling. These landmarks subsequently act as intermediaries in an ensemble of augmentation techniques, including Retrieval-Augmented Generation (RAG), Large Language Model (LLMs)-based rewriting, and synonym substitution, to generate synthetic labeled data without making pseudo-labels for the unlabeled data. Empirical results show that even in complex text document classification scenarios involving over 100 categories, our method achieves state-of-the-art accuracies of 95.41% on the Reuters dataset and 82.43% on the Web of Science dataset. Our approach significantly reduces the reliance on human labeling efforts and the associated expenses, while simultaneously ensuring high data quality and minimizing privacy risks. The finetuning results further show the efficiency of fine-tuning LLMs for text classification tasks, highlighting a robust solution for leveraging limited labeled data.
翻译:暂无翻译