Recent research works have shown that image retrieval models are vulnerable to adversarial attacks, where slightly modified test inputs could lead to problematic retrieval results. In this paper, we aim to design a provably robust image retrieval model which keeps the most important evaluation metric Recall@1 invariant to adversarial perturbation. We propose the first 1-nearest neighbor (NN) image retrieval algorithm, RetrievalGuard, which is provably robust against adversarial perturbations within an $\ell_2$ ball of calculable radius. The challenge is to design a provably robust algorithm that takes into consideration the 1-NN search and the high-dimensional nature of the embedding space. Algorithmically, given a base retrieval model and a query sample, we build a smoothed retrieval model by carefully analyzing the 1-NN search procedure in the high-dimensional embedding space. We show that the smoothed retrieval model has bounded Lipschitz constant and thus the retrieval score is invariant to $\ell_2$ adversarial perturbations. Experiments on image retrieval tasks validate the robustness of our RetrievalGuard method.
翻译:最近的研究研究显示,图像检索模型很容易受到对抗性攻击,在对抗性攻击中,稍作修改的测试输入可能导致有问题的检索结果。在本文中,我们的目标是设计一个可辨别的稳健图像检索模型,将最重要的评价指标回溯@1 变量维持在对抗性扰动中。我们建议了第一个最近的邻居图像检索算法(NN),RetreivalGuard),该算法对在$\ell_2美元计算半径球内的对抗性扰动具有可辨别性强力。我们面临的挑战是设计一个考虑到1-NN搜索和嵌入空间的高度特性的可辨别强性算法。在进行基本检索模型和查询抽样的情况下,我们仔细分析了高维嵌入空间的1-N搜索程序,从而建立了一个平稳的检索模型。我们显示,光滑的检索模型将Lipschitz恒定值捆绑起来,因此检索分数为$\ell_2美元。关于图像检索任务的实验证实了我们的Retrivalvalard方法的稳健性。