With the fast development of autonomous driving technologies, there is an increasing demand for high-definition (HD) maps, which provide reliable and robust prior information about the static part of the traffic environments. As one of the important elements in HD maps, road lane centerline is critical for downstream tasks, such as prediction and planning. Manually annotating centerlines for road lanes in HD maps is labor-intensive, expensive and inefficient, severely restricting the wide applications of autonomous driving systems. Previous work seldom explores the lane centerline detection problem due to the complicated topology and severe overlapping issues of lane centerlines. In this paper, we propose a novel method named CenterLineDet to detect lane centerlines for automatic HD map generation. Our CenterLineDet is trained by imitation learning and can effectively detect the graph of centerlines with vehicle-mounted sensors (i.e., six cameras and one LiDAR) through iterations. Due to the use of the DETR-like transformer network, CenterLineDet can handle complicated graph topology, such as lane intersections. The proposed approach is evaluated on the large-scale public dataset NuScenes. The superiority of our CenterLineDet is demonstrated by the comparative results. Our code, supplementary materials, and video demonstrations are available at \href{https://tonyxuqaq.github.io/projects/CenterLineDet/}{https://tonyxuqaq.github.io/projects/CenterLineDet/}.


翻译:随着自主驾驶技术的快速发展,对高清晰(HD)地图的需求不断增加,这些地图为交通环境的静态部分提供了可靠和可靠的先前信息。作为HD地图的重要内容之一,公路中线对于下游任务至关重要,例如预测和规划。HD地图中道路行道的人工说明中线是劳动密集型、昂贵和低效的,严重限制了自主驾驶系统的广泛应用。由于复杂的地形学和严重重叠的车道中线问题,以往的工作很少探索车道中线探测问题。在本文中,我们提出了名为CentralLineDeineDeit的新方法,用于探测自动HDM地图生成的车道中线。我们的CentralLineDet经过模拟学习,能够有效地探测车载传感器(即6个照相机和1个LDAR)的中线图。由于使用类似于变压器网络,CentreLineDereat可以处理复杂的图表表层学问题,例如车道路交叉点。我们提议的中线路路路路路段/LineDeineDeet,我们的拟议方法通过模拟的比较性数据库显示我们的公共数据。</s>

0
下载
关闭预览

相关内容

超文本传输安全协议是超文本传输协议和 SSL/TLS 的组合,用以提供加密通讯及对网络服务器身份的鉴定。
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2021年6月21日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
11+阅读 · 2019年1月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员