We study the question of how visual analysis can support the comparison of spatio-temporal ensemble data of liquid and gas flow in porous media. To this end, we focus on a case study, in which nine different research groups concurrently simulated the process of injecting CO2 into the subsurface. We explore different data aggregation and interactive visualization approaches to compare and analyze these nine simulations. In terms of data aggregation, one key component is the choice of similarity metrics that define the relation between the different simulations. We test different metrics and find that a fine-tuned machine-learning based metric provides the best visualization results. Based on that, we propose different visualization methods. For overviewing the data, we use dimensionality reduction methods that allow us to plot and compare the different simulations in a scatterplot. To show details about the spatio-temporal data of each individual simulation, we employ a space-time cube volume rendering. We use the resulting interactive, multi-view visual analysis tool to explore the nine simulations and also to compare them to data from experimental setups. Our main findings include new insights into ranking of simulation results with respect to experimental data, and the development of gravity fingers in simulations.
翻译:我们研究视觉分析如何支持对多孔介质中液体和气体流动的液态和气态混合数据进行比较的问题。 为此,我们着重研究一个案例研究,由九个不同的研究组同时模拟将二氧化碳注入地下的过程。我们探索不同的数据汇总和互动可视化方法,以比较和分析这九种模拟。在数据汇总方面,一个关键组成部分是选择类似度量,以界定不同模拟之间的关系。我们测试不同的度量,发现基于微调机学的仪表提供了最佳的可视化结果。基于这一点,我们提出不同的可视化方法。为了概览数据,我们使用维度减少方法,以便绘制和比较散射图中的不同模拟。为了展示关于每个模拟的阵列-时空数据的细节,我们使用一个空间时立立立体体体量。我们使用由此产生的互动、多视图的视觉分析工具来探索九种模拟,并将它们与实验设置数据进行比较。我们的主要发现包括在模拟结果中进行新的精深的模拟,包括将模拟结果与模拟的精细度与数据排序。