In clinical practice, magnetic resonance imaging (MRI) with multiple contrasts is usually acquired in a single study to assess different properties of the same region of interest in human body. The whole acquisition process can be accelerated by having one or more modalities under-sampled in the k-space. Recent researches demonstrate that, considering the redundancy between different contrasts or modalities, a target MRI modality under-sampled in the k-space can be better reconstructed with the helps from a fully-sampled sequence (i.e., the reference modality). It implies that, in the same study of the same subject, multiple sequences can be utilized together toward the purpose of highly efficient multi-modal reconstruction. However, we find that multi-modal reconstruction can be negatively affected by subtle spatial misalignment between different sequences, which is actually common in clinical practice. In this paper, we integrate the spatial alignment network with reconstruction, to improve the quality of the reconstructed target modality. Specifically, the spatial alignment network estimates the spatial misalignment between the fully-sampled reference and the under-sampled target images, and warps the reference image accordingly. Then, the aligned fully-sampled reference image joins the under-sampled target image in the reconstruction network, to produce the high-quality target image. Considering the contrast difference between the target and the reference, we particularly design the cross-modality-synthesis-based registration loss, in combination with the reconstruction loss, to jointly train the spatial alignment network and the reconstruction network. Our experiments on both clinical MRI and multi-coil k-space raw data demonstrate the superiority and robustness of our spatial alignment network. Code is publicly available at https://github.com/woxuankai/SpatialAlignmentNetwork.


翻译:在临床实践中,具有多重对比度的磁共振成像(MRI)通常是在一次研究中获得的,目的是评估对人体感兴趣的同一区域的不同特性。整个获取过程可以通过在 k- 空间中复制一种或多种模式而加快。最近的研究显示,考虑到不同对比度或模式之间的冗余,在 k- 空间中复制的目标MRI模式可以更好地进行重建,因为完全抽样的顺序(即参考模式)有助于改善目标调整的质量。这意味着,在同一主题的研究中,为了高效的多模式重建的目的,可以同时使用多个序列。然而,我们发现,多模式重建过程可能会受到不同序列之间微妙的空间错乱的不利影响,而这种偏差实际上是临床实践中常见的。在本文件中,我们将空间对网络的匹配网络与重建相结合,以提高目标调整方式的质量。具体地,空间组合网络对空间对基准参照点的对空间错乱进行估算。完全抽样引用的引用和下版的目标重建目标目标的交叉图像可以一起进行重复。在网络中,对数据进行实时的升级和对图像进行彻底整合。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
三维重建 3D reconstruction 有哪些实用算法?
极市平台
13+阅读 · 2020年2月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
5+阅读 · 2018年3月30日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员