We determine the exact minimax rate of a Gaussian sequence model under bounded convex constraints, purely in terms of the local geometry of the given constraint set $K$. Our main result shows that the minimax risk (up to constant factors) under the squared $L_2$ loss is given by $\epsilon^{*2} \wedge \operatorname{diam}(K)^2$ with \begin{align*} \epsilon^* = \sup \bigg\{\epsilon : \frac{\epsilon^2}{\sigma^2} \leq \log M^{\operatorname{loc}}(\epsilon)\bigg\}, \end{align*} where $\log M^{\operatorname{loc}}(\epsilon)$ denotes the local entropy of the set $K$, and $\sigma^2$ is the variance of the noise. We utilize our abstract result to re-derive known minimax rates for some special sets $K$ such as hyperrectangles, ellipses, and more generally quadratically convex orthosymmetric sets. Finally, we extend our results to the unbounded case with known $\sigma^2$ to show that the minimax rate in that case is $\epsilon^{*2}$.


翻译:我们确定一个高斯序列模型的精确微缩比例, 纯粹以设定约束值的本地几何来决定 $K$。 我们的主要结果显示, 平方 $L_ 2$ 损失下的小移动风险( 直至恒定系数) 由$\ epsilon=2}\wedge\operatorname{diam}( K) =2$, 加上\ begin{ align} $_ ==\ bigg $_ = =\ bigg ⁇ epslon :\ frac =2 = 2\ sigma2}\ leq\ log Móperatorname{ (\\\\\ epsilon)\ bigg\\ }\ lag_ =\ lex lag lax lax max lax lax lax lax lax lax lax lax mex lax lax lax exmexmexmexmexmexmass exmexmex exmexmex ex exmexmex ex ex ex ex exmexmexmexmexmex, exmission ex ex ex ex ex exmex ex ex ex ex ex exmexmexmexmexmexmexmexmexmex exmexmexmexmexmex ex ex ex ex ex ex ex ex ex ex exmexmexmexmexmexmexmexmexmexmexmexmexmexmexmexmexmexml exml exm exm exm exm exm ex ex expl expls ex ex ex ex ex ex ex = ex ex ex ex ex ex ex ex ex ex ex ex ex ex = ex ex ex ex ex ex ex ex ex ex ex

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
139+阅读 · 2020年5月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Convergence of the Discrete Minimum Energy Path
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员