We determine the exact minimax rate of a Gaussian sequence model under bounded convex constraints, purely in terms of the local geometry of the given constraint set $K$. Our main result shows that the minimax risk (up to constant factors) under the squared $L_2$ loss is given by $\epsilon^{*2} \wedge \operatorname{diam}(K)^2$ with \begin{align*} \epsilon^* = \sup \bigg\{\epsilon : \frac{\epsilon^2}{\sigma^2} \leq \log M^{\operatorname{loc}}(\epsilon)\bigg\}, \end{align*} where $\log M^{\operatorname{loc}}(\epsilon)$ denotes the local entropy of the set $K$, and $\sigma^2$ is the variance of the noise. We utilize our abstract result to re-derive known minimax rates for some special sets $K$ such as hyperrectangles, ellipses, and more generally quadratically convex orthosymmetric sets. Finally, we extend our results to the unbounded case with known $\sigma^2$ to show that the minimax rate in that case is $\epsilon^{*2}$.
翻译:我们确定一个高斯序列模型的精确微缩比例, 纯粹以设定约束值的本地几何来决定 $K$。 我们的主要结果显示, 平方 $L_ 2$ 损失下的小移动风险( 直至恒定系数) 由$\ epsilon=2}\wedge\operatorname{diam}( K) =2$, 加上\ begin{ align} $_ ==\ bigg $_ = =\ bigg ⁇ epslon :\ frac =2 = 2\ sigma2}\ leq\ log Móperatorname{ (\\\\\ epsilon)\ bigg\\ }\ lag_ =\ lex lag lax lax max lax lax lax lax lax lax lax lax mex lax lax lax exmexmexmexmexmexmass exmexmex exmexmex ex exmexmex ex ex ex ex exmexmexmexmexmex, exmission ex ex ex ex ex exmex ex ex ex ex ex exmexmexmexmexmexmexmexmexmex exmexmexmexmexmex ex ex ex ex ex ex ex ex ex ex exmexmexmexmexmexmexmexmexmexmexmexmexmexmexmexmexmexml exml exm exm exm exm exm ex ex expl expls ex ex ex ex ex ex ex = ex ex ex ex ex ex ex ex ex ex ex ex ex ex = ex ex ex ex ex ex ex ex ex ex ex