Spectral geometric methods have brought revolutionary changes to the field of geometry processing. Of particular interest is the study of the Laplacian spectrum as a compact, isometry and permutation-invariant representation of a shape. Some recent works show how the intrinsic geometry of a full shape can be recovered from its spectrum, but there are approaches that consider the more challenging problem of recovering the geometry from the spectral information of partial shapes. In this paper, we propose a possible way to fill this gap. We introduce a learning-based method to estimate the Laplacian spectrum of the union of partial non-rigid 3D shapes, without actually computing the 3D geometry of the union or any correspondence between those partial shapes. We do so by operating purely in the spectral domain and by defining the union operation between short sequences of eigenvalues. We show that the approximated union spectrum can be used as-is to reconstruct the complete geometry [MRC*19], perform region localization on a template [RTO*19] and retrieve shapes from a database, generalizing ShapeDNA [RWP06] to work with partialities. Working with eigenvalues allows us to deal with unknown correspondence, different sampling, and different discretizations (point clouds and meshes alike), making this operation especially robust and general. Our approach is data-driven and can generalize to isometric and non-isometric deformations of the surface, as long as these stay within the same semantic class (e.g., human bodies or horses), as well as to partiality artifacts not seen at training time.
翻译:光谱的几何方法给几何处理领域带来了革命性的变化。 特别令人感兴趣的是, 将拉普拉西亚谱系作为形状的缩压、 等离度和变异性表示法进行研究。 最近的一些作品显示, 如何从整个形状的光谱中恢复整形的内在几何学, 但有些方法认为, 从部分形状的光谱信息中恢复几何学的难度更大。 在本文中, 我们提出填补这一空白的可能方法 。 我们采用了一种基于学习的方法来估计部分非硬化 3D 形状结合的拉普拉西亚谱, 而不实际计算该组合的三维几何学或这些部分形状之间的任何对应。 我们这样做的方法是纯粹在光谱域内操作, 并界定全光谱值的短序列之间的组合操作。 我们显示, 大约的联盟频谱可以用来重建完整的几何[ MRC*19], 在模板上进行区域本地化 [RTO*19], 并从一个非硬度的3D形状数据库中检索形状, 而非直径直径直径直径直径结构,, 我们的Sal06 和直径结构内部操作到不同数据, 和直径直径对等、, 将这些直径对等、 和直径对等的算为不同数据的计算, 和直径对等、, 和直径对等、,, 可以观察、 和直径对等的计算为不同数据,,,, 和直径对等、 和直系为不同数据系为不同的算为不同的算为不同的算为不同。</s>