Pulmonary Embolisms (PE) represent a leading cause of cardiovascular death. While medical imaging, through computed tomographic pulmonary angiography (CTPA), represents the gold standard for PE diagnosis, it is still susceptible to misdiagnosis or significant diagnosis delays, which may be fatal for critical cases. Despite the recently demonstrated power of deep learning to bring a significant boost in performance in a wide range of medical imaging tasks, there are still very few published researches on automatic pulmonary embolism detection. Herein we introduce a deep learning based approach, which efficiently combines computer vision and deep neural networks for pulmonary embolism detection in CTPA. Our method features novel improvements along three orthogonal axes: 1) automatic detection of anatomical structures; 2) anatomical aware pretraining, and 3) a dual-hop deep neural net for PE detection. We obtain state-of-the-art results on the publicly available multicenter large-scale RSNA dataset.
翻译:肺栓塞(PE)是心血管死亡的主要原因之一。虽然通过计算机断层扫描肺血管造影(CTPA)进行医学成像是PE诊断的黄金标准,但仍容易误诊或导致重要病例诊断延迟,对于有危险的病人来说可能导致致命后果。尽管深度学习在医学成像任务中的表现已经得到证明,但目前公开发布的关于自动肺栓塞检测的研究仍然很少。在本文中,我们介绍了一种基于深度学习的方法,该方法通过计算机视觉和深度神经网络有效地组合用于CTPA中肺栓塞检测。我们的方法沿三个正交轴线进行了新颖的改进:1)解剖结构的自动检测;2)解剖感知预训练和3)双跳深度神经网络用于PE检测。我们在公开的RSNA多中心大规模数据集上获得了最先进的结果。