Deep neural networks are able to learn multi-layered representation via back propagation (BP). Although the gradient boosting decision tree (GBDT) is effective for modeling tabular data, it is non-differentiable with respect to its input, thus suffering from learning multi-layered representation. In this paper, we propose a framework of learning multi-layered GBDT via BP. We approximate the gradient of GBDT based on linear regression. Specifically, we use linear regression to replace the constant value at each leaf ignoring the contribution of individual samples to the tree structure. In this way, we estimate the gradient for intermediate representations, which facilitates BP for multi-layered GBDT. Experiments show the effectiveness of the proposed method in terms of performance and representation ability. To the best of our knowledge, this is the first work of optimizing multi-layered GBDT via BP. This work provides a new possibility of exploring deep tree based learning and combining GBDT with neural networks.


翻译:深神经网络能够通过回传(BP)学习多层代表。 虽然梯度增强决策树(GBDT)对于模拟表层数据是有效的,但对于其投入是不可区别的,因此受到多层次代表制的困扰。 在本文中,我们提出了一个通过BP学习多层次GBDT的框架。 我们根据线性回归度估计GBDT梯度的梯度。 具体地说,我们用线性回归取代每片叶的不变值,忽略单个样本对树结构的贡献。 这样,我们估计了中间代表制的梯度,这为多层GBDT提供了便利。 实验显示了拟议方法在绩效和代表性能力方面的有效性。 据我们所知,这是通过BP优化多层GBDT的首次工作。 这项工作为探索深树基学习和将GBDT与神经网络相结合提供了新的可能性。

0
下载
关闭预览

相关内容

GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起被认为是泛化能力较强的算法。
首篇「课程学习(Curriculum Learning)」2021综述论文
专知会员服务
49+阅读 · 2021年1月31日
专知会员服务
139+阅读 · 2020年5月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
一文搞懂反向传播
机器学习与推荐算法
18+阅读 · 2020年3月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Machine Learning:十大机器学习算法
开源中国
20+阅读 · 2018年3月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
31+阅读 · 2020年9月21日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
一文搞懂反向传播
机器学习与推荐算法
18+阅读 · 2020年3月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Machine Learning:十大机器学习算法
开源中国
20+阅读 · 2018年3月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员