Sequence-to-sequence learning with neural networks has become the de facto standard for sequence prediction tasks. This approach typically models the local distribution over the next word with a powerful neural network that can condition on arbitrary context. While flexible and performant, these models often require large datasets for training and can fail spectacularly on benchmarks designed to test for compositional generalization. This work explores an alternative, hierarchical approach to sequence-to-sequence learning with quasi-synchronous grammars, where each node in the target tree is transduced by a node in the source tree. Both the source and target trees are treated as latent and induced during training. We develop a neural parameterization of the grammar which enables parameter sharing over the combinatorial space of derivation rules without the need for manual feature engineering. We apply this latent neural grammar to various domains -- a diagnostic language navigation task designed to test for compositional generalization (SCAN), style transfer, and small-scale machine translation -- and find that it performs respectably compared to standard baselines.


翻译:神经网络的序列到序列学习已成为测序任务的实际标准。 这种方法通常以一个强大的神经网络为下个词的本地分布模型, 并且有一个强大的神经网络, 可以随任意环境而定。 虽然这些模型具有灵活性和性能性, 但是这些模型往往需要大量的数据集用于培训, 并且对于用来测试构成性一般化的基准则可能大失所望。 这项工作探索了一种替代的、 等级分级的方法来进行序列到序列学习, 使用准同步语法学习, 目标树的每个节点都通过源树中的节点转换。 源树和目标树在培训期间都被视为潜在和诱导的。 我们开发了语法的神经参数参数参数化, 使衍生规则的组合空间得以共享, 而不需要人工特征工程。 我们将这一潜在的神经语法图应用于多个领域 -- 一种诊断语言导航任务, 旨在测试构成性一般化( SCAN)、 风格转换和小型机器翻译, 并发现它与标准基线相对, 并发现它运行得体化 。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
专知会员服务
117+阅读 · 2019年12月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Graph Transformer for Graph-to-Sequence Learning
Arxiv
4+阅读 · 2019年11月30日
Arxiv
3+阅读 · 2018年11月14日
Arxiv
4+阅读 · 2017年7月25日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员