In this paper we revisit the well known set-maxima problem in the oblivious setting. Let $X=\{x_1,\ldots, x_n\}$ be a set of $n$ elements with an underlying total order. Let $\mathcal{S}=\{S_1,\ldots,S_m\}$ be a collection of $m$ distinct subsets of $X$. The set-maxima problem asks to determine the maxima of all the sets in the collection. In the comparison tree model we are interested in determining the number of comparisons necessary and sufficient to solve the problem. We present an oblivious algorithm based on the lattice structure of the input set system. Our algorithm is simple and yet for many set systems gives a non-trivial improvement over known deterministic algorithms. We apply our algorithm to a special $\cal S$ which is determined by an intersection structure of convex polygons and show that $O(n)$ comparisons suffice.
翻译:在本文中, 我们重温了在模糊的设置中众所周知的设置- maxima 问题 。 在比较树模型中, 我们有兴趣确定需要和足以解决问题的比较数量 。 我们根据输入设置系统的平面结构提出了一套隐蔽的算法。 我们的算法简单, 但是对于许多设置的系统来说, 我们的算法可以对已知的确定性算法进行非三边的改进。 我们用我们的算法来计算一个特殊的 $\ cal S$, 它由锥形多边形的交叉结构决定, 并显示 $(n) 的比较已经足够 。