A vast majority of spiking neural networks (SNNs) are trained based on inductive biases that are not necessarily a good fit for several critical tasks that require low-latency and power efficiency. Inferring brain behavior based on the associated electroenchephalography (EEG) signals is an example of how networks training and inference efficiency can be heavily impacted by learning spatio-temporal dependencies. Up to now, SNNs rely solely on general inductive biases to model the dynamic relations between different data streams. Here, we propose a graph spiking neural network architecture for multi-channel EEG classification (EEGSN) that learns the dynamic relational information present in the distributed EEG sensors. Our method reduced the inference computational complexity by $\times 20$ compared to the state-of-the-art SNNs, while achieved comparable accuracy on motor execution classification tasks. Overall, our work provides a framework for interpretable and efficient training of graph spiking networks that are suitable for low-latency and low-power real-time applications.


翻译:大多数脉冲神经网络(SNN)的训练基于归纳偏差,这些偏差不一定适合需要低延迟和功率效率的多个关键任务。基于相关的脑电图(EEG)信号推断大脑行为是一种网络训练和推理效率可能受到时空依赖关系影响的情况。到目前为止,SNN仅依赖于一般归纳偏差来建模不同数据流之间的动态关系。在此,我们提出了一种基于图形脉冲神经网络的多通道脑电图分类体系结构(EEGSN),它学习了分布式EEG传感器中存在的动态关系信息。与现有的SNN相比,我们的方法将推理计算复杂度降低了20倍,同时在运动执行分类任务方面获得了可比较的准确性。总的来说,我们的工作提供了一个框架,用于解释和高效训练适用于低延迟和低功率实时应用的图形脉冲网络。

0
下载
关闭预览

相关内容

【UIUC博士论文】高效多智能体深度强化学习,130页pdf
专知会员服务
65+阅读 · 2023年1月14日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
22+阅读 · 2019年11月4日
【Code】GraphSAGE 源码解析
AINLP
29+阅读 · 2020年6月22日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
37+阅读 · 2021年2月10日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Deep Graph Infomax
Arxiv
16+阅读 · 2018年12月21日
VIP会员
相关资讯
【Code】GraphSAGE 源码解析
AINLP
29+阅读 · 2020年6月22日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员