Modern hardware heterogeneity brings efficiency and performance opportunities for analytical query processing. In the presence of continuous data volume and complexity growth, bridging the gap between recent hardware advancements and the data processing tools ecosystem is paramount for improving the speed of ETL and model development. In this paper, we present a comprehensive overview of existing analytical query processing approaches as well as the use and design of systems that use heterogeneous hardware for the task. We then analyze state-of-the-art solutions and identify missing pieces. The last two chapters discuss the identified problems and present our view on how the ecosystem should evolve.
翻译:暂无翻译