Estimating the underlying distribution from \textit{iid} samples is a classical and important problem in statistics. When the alphabet size is large compared to number of samples, a portion of the distribution is highly likely to be unobserved or sparsely observed. The missing mass, defined as the sum of probabilities $\text{Pr}(x)$ over the missing letters $x$, and the Good-Turing estimator for missing mass have been important tools in large-alphabet distribution estimation. In this article, given a positive function $g$ from $[0,1]$ to the reals, the missing $g$-mass, defined as the sum of $g(\text{Pr}(x))$ over the missing letters $x$, is introduced and studied. The missing $g$-mass can be used to investigate the structure of the missing part of the distribution. Specific applications for special cases such as order-$\alpha$ missing mass ($g(p)=p^{\alpha}$) and the missing Shannon entropy ($g(p)=-p\log p$) include estimating distance from uniformity of the missing distribution and its partial estimation. Minimax estimation is studied for order-$\alpha$ missing mass for integer values of $\alpha$ and exact minimax convergence rates are obtained. Concentration is studied for a class of functions $g$ and specific results are derived for order-$\alpha$ missing mass and missing Shannon entropy. Sub-Gaussian tail bounds with near-optimal worst-case variance factors are derived. Two new notions of concentration, named strongly sub-Gamma and filtered sub-Gaussian concentration, are introduced and shown to result in right tail bounds that are better than those obtained from sub-Gaussian concentration.


翻译:暂无翻译

0
下载
关闭预览

相关内容

MASS:IEEE International Conference on Mobile Ad-hoc and Sensor Systems。 Explanation:移动Ad hoc和传感器系统IEEE国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/mass/index.html
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年7月16日
Arxiv
0+阅读 · 2023年7月16日
Arxiv
0+阅读 · 2023年7月15日
Arxiv
1+阅读 · 2023年7月14日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
31+阅读 · 2020年9月21日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
相关论文
Arxiv
0+阅读 · 2023年7月16日
Arxiv
0+阅读 · 2023年7月16日
Arxiv
0+阅读 · 2023年7月15日
Arxiv
1+阅读 · 2023年7月14日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
31+阅读 · 2020年9月21日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员