We propose a verified computation method for eigenvalues in a region and the corresponding eigenvectors of generalized Hermitian eigenvalue problems. The proposed method uses complex moments to extract the eigencomponents of interest from a random matrix and uses the Rayleigh$\unicode{x2013}$Ritz procedure to project a given eigenvalue problem into a reduced eigenvalue problem. The complex moment is given by contour integral and approximated using numerical quadrature. We split the error in the complex moment into the truncation error of the quadrature and rounding errors and evaluate each. This idea for error evaluation inherits our previous Hankel matrix approach, whereas the proposed method enables verification of eigenvectors and requires half the number of quadrature points for the previous approach to reduce the truncation error to the same order. Moreover, the Rayleigh$\unicode{x2013}$Ritz procedure approach forms a transformation matrix that enables verification of the eigenvectors. Numerical experiments show that the proposed method is faster than previous methods while maintaining verification performance and works even for nearly singular matrix pencils and in the presence of multiple and nearly multiple eigenvalues.
翻译:我们建议了一个区域中的乙基值的核查计算方法, 以及通用的乙基值问题。 拟议的方法使用复杂的时间从随机矩阵中提取感兴趣的乙基成分, 并使用Raylege$\unicode{x2013}$Ritz 程序将给定的乙基值问题投射成一个减少的乙基值问题。 复杂的时刻由 contour 集成和近似以数字二次曲线给出。 我们将复杂的时刻的错误分解为二次曲线和圆形错误的转轨错误, 并对每个错误进行评估。 这个错误评价的想法继承了我们以前的汉克尔矩阵方法, 而拟议方法则使得能够核查乙基值人, 并且要求将前一个方法的四极点数减半, 以将调解算错误降低到同一顺序。 此外, Raylegeley$\uncode{x2013}$Ritzt 程序构成了一个转换矩阵方法, 以便能够对二次曲线和圆形错误进行核查。 数值实验显示, 拟议的方法比先前的汉克尔矩阵方法要快得多, 并且几乎是用于维持多种模模模的模模模模的模的模模的模的模模模。