NIR-to-VIS face recognition is identifying faces of two different domains by extracting domain-invariant features. However, this is a challenging problem due to the two different domain characteristics, and the lack of NIR face dataset. In order to reduce domain discrepancy while using the existing face recognition models, we propose a 'Relation Module' which can simply add-on to any face recognition models. The local features extracted from face image contain information of each component of the face. Based on two different domain characteristics, to use the relationships between local features is more domain-invariant than to use it as it is. In addition to these relationships, positional information such as distance from lips to chin or eye to eye, also provides domain-invariant information. In our Relation Module, Relation Layer implicitly captures relationships, and Coordinates Layer models the positional information. Also, our proposed Triplet loss with conditional margin reduces intra-class variation in training, and resulting in additional performance improvements. Different from the general face recognition models, our add-on module does not need to pre-train with the large scale dataset. The proposed module fine-tuned only with CASIA NIR-VIS 2.0 database. With the proposed module, we achieve 14.81% rank-1 accuracy and 15.47% verification rate of 0.1% FAR improvements compare to two baseline models.
翻译:NIR-VIS 面部识别是通过提取域变量特征来识别两个不同域的面孔。 但是,由于两个不同的域特性以及缺少国家清单报告的脸数据集,这是一个具有挑战性的问题。 为了利用现有的面部识别模型来缩小域差异,我们提议了一个“关系模块”,该模块可以简单地添加到任何面部识别模型上。从表面图像中提取的本地特征包含每个面部组成部分的信息。基于两个不同的域特性,使用地方特征之间的关系比使用它更具域内差异性。除了这些关系之外,定位信息,如从嘴唇到下巴的距离或眼对眼的距离,还提供域内差异信息。为了减少域差异,我们使用现有的面部识别模型,我们提议“关系模块模块模块模块模块模块模块模块模块模块模块模块”“关系”隐含地捕捉关系,并协调图层模型的定位信息。此外,我们提议的Triplelete 损失减少了培训中各个组成部分的内部差异,并导致额外的性能改进。不同于一般面识别模型,我们添加的模块模块不需要在大规模数据设置前进行预选。 14. 拟议的模块将模块模块的升级升级到15 % 将模块升级比我们仅达到15 % 的升级,我们的拟议模块的升级升级到升级到升级到升级到升级到升级到升级到升级为15的升级。