Safety and liveness are elementary concepts of computation, and the foundation of many verification paradigms. The safety-liveness classification of boolean properties characterizes whether a given property can be falsified by observing a finite prefix of an infinite computation trace (always for safety, never for liveness). In quantitative specification and verification, properties assign not truth values, but quantitative values to infinite traces (e.g., a cost, or the distance to a boolean property). We introduce quantitative safety and liveness, and we prove that our definitions induce conservative quantitative generalizations of both (1)~the safety-progress hierarchy of boolean properties and (2)~the safety-liveness decomposition of boolean properties. In particular, we show that every quantitative property can be written as the pointwise minimum of a quantitative safety property and a quantitative liveness property. Consequently, like boolean properties, also quantitative properties can be $\min$-decomposed into safety and liveness parts, or alternatively, $\max$-decomposed into co-safety and co-liveness parts. Moreover, quantitative properties can be approximated naturally. We prove that every quantitative property that has both safe and co-safe approximations can be monitored arbitrarily precisely by a monitor that uses only a finite number of states.


翻译:安全性和活性是计算的基本概念,也是许多核查范式的基础。布林属性的安全性-生命性分类通过观察无限计算痕迹的有限前缀(为了安全,从不为了生命)来描述某个属性是否可以伪造。在数量规格和核查中,属性没有指定真实值,而是将量化值指定为无限痕迹(例如成本或与布林属性的距离)。我们引入了定量安全和活性部分,并且我们证明我们的定义导致对(1) 布林属性的安全性-进展等级和(2) 布尔属性的安全性-生命性分解的保守性定量概括。特别是,我们表明每一种定量属性都可以作为量化安全性属性和定量性活性属性的最起码的点。因此,像布林属性一样,量化性属性也可以在安全和活性部分中分解为$-min-droundo,或者说, $\maxx-decomm-commation,此外,量化性属性可以自然地测量每个量化性能的安全性能的精确度。我们只能通过对每个量化性能进行精确的精确度监测。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月15日
Arxiv
44+阅读 · 2022年9月6日
Arxiv
14+阅读 · 2020年12月17日
Knowledge Representation Learning: A Quantitative Review
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员