Local feature matching is challenging due to the textureless and repetitive pattern. Existing methods foucs on using appearance features and global interaction and matching, while the importance of geometry prior in local feature matching has not been fully exploited. Different from these methods, in this paper, we delve into the importance of geometry prior and propose Structured Epipolar Matcher (SEM) for local feature matching, which can leverage the geometric information in a iterative matching way. The proposed model enjoys several merits. First, our proposed Structured Feature Extractor can model the relative positional relationship between pixels and high-confidence anchor points. Second, our proposed Epipolar Attention and Matching can filter out irrelevant areas by utilizing the epipolar constraint. Extensive experimental results on five standard benchmarks demonstrate the superior performance of our SEM compared to state-of-the-art methods.
翻译:局部特征匹配在无纹理和重复的图案存在时是具有挑战性的。现有的方法侧重于使用外观特征和全局互动匹配,而局部特征匹配中几何先验的重要性尚未被充分利用。与这些方法不同,本文深入探讨了几何先验的重要性,并提出了一种用于局部特征匹配的经过结构化处理的极线匹配器(SEM),它可以通过迭代匹配方式利用几何信息。所提出的模型具有几个优点。首先,我们的结构化特征提取器可以对像素和高可信锚点之间的相对位置关系进行建模。其次,我们提出的极线关注和匹配可以利用极线约束过滤掉不相关的区域。在五个标准基准测试上广泛的实验结果表明,与最先进的方法相比,我们的SEM具有卓越的性能。