Blood oxygen level dependent (BOLD) MRI with maternal hyperoxia can assess oxygen transport within the placenta and has emerged as a promising tool to study placental function. Measuring signal changes over time requires segmenting the placenta in each volume of the time series. Due to the large number of volumes in the BOLD time series, existing studies rely on registration to map all volumes to a manually segmented template. As the placenta can undergo large deformation due to fetal motion, maternal motion, and contractions, this approach often results in a large number of discarded volumes, where the registration approach fails. In this work, we propose a machine learning model based on a U-Net neural network architecture to automatically segment the placenta in BOLD MRI and apply it to segmenting each volume in a time series. We use a boundary-weighted loss function to accurately capture the placental shape. Our model is trained and tested on a cohort of 91 subjects containing healthy fetuses, fetuses with fetal growth restriction, and mothers with high BMI. We achieve a Dice score of 0.83+/-0.04 when matching with ground truth labels and our model performs reliably in segmenting volumes in both normoxic and hyperoxic points in the BOLD time series. Our code and trained model are available at https://github.com/mabulnaga/automatic-placenta-segmentation.
翻译:由于BOLLD时间序列中数量庞大,现有研究依靠注册将所有卷量都映入一个人工分解的模板。由于胎盘运动、产妇运动和收缩导致胎胎胎胎胎可以发生大变形,因此,由于胎盘可以因胎儿运动、产妇运动和收缩而导致大量畸形,这一方法往往导致大量废弃的体积,而登记方法失败了。在这项工作中,我们提议了一个基于U-Net神经网络结构结构的机器学习模型,以U-Net神经网络结构为基础,用U-Net神经网络架构为基础,自动分割时间序列中每个体积的胎盘。测量信号随着时间序列中每个体积的胎盘数,测量时间序列中需要对胎盘进行分。由于BOLLD MRI 的时间序列中大量数量,现有研究依靠注册,将所有卷积的卷数都用BLOLLLD序列中的大量量,将所有体积的流失功能用于准确捕获胎形形状。我们的模型经过培训和测试的有91个主题,包括健康的胎儿、胎儿、胎儿成长成长限制的胎儿、胎儿发育院院院院院院会、胎儿成长成长限制的胎儿和母亲。我们BMI的母亲。我们在BMI中,我们在一个模型、有可靠、经过训练的时,我们在可查、在可查、可查的时,我们在可查的代、可查、可查的代、可查的代、可查的代碼中,在可查的DLDLDDLDLDDDDDRD、可、在可查的DRDDDDRDRDRDRDRD、CD、C、C、C、CDD、CD的9、CD、C、C的9的9、C的9、C的9的9、在可查的9的9、在可查的9、D的9、BD的9D的9、BDDDDDDDD的9、9、BDDD的9、9、9、9、9中,我们的9、BD的9、9的9的9、9的9、9、9、9的9、9、9的9的9、9、9、9的9、9、9的9