We present MUG, a novel interactive task for multimodal grounding where a user and an agent work collaboratively on an interface screen. Prior works modeled multimodal UI grounding in one round: the user gives a command and the agent responds to the command. Yet, in a realistic scenario, a user command can be ambiguous when the target action is inherently difficult to articulate in natural language. MUG allows multiple rounds of interactions such that upon seeing the agent responses, the user can give further commands for the agent to refine or even correct its actions. Such interaction is critical for improving grounding performances in real-world use cases. To investigate the problem, we create a new dataset that consists of 77,820 sequences of human user-agent interaction on mobile interfaces in which 20% involves multiple rounds of interactions. To establish our benchmark, we experiment with a range of modeling variants and evaluation strategies, including both offline and online evaluation-the online strategy consists of both human evaluation and automatic with simulators. Our experiments show that allowing iterative interaction significantly improves the absolute task completion by 18% over the entire test dataset and 31% over the challenging subset. Our results lay the foundation for further investigation of the problem.


翻译:我们提出MUG,这是在用户和代理商在界面屏幕上合作工作的地方进行多式联运的新型互动任务。 先前的模拟多式联运界面以一回合为基础: 用户发出指令, 代理商响应指令。 然而, 在现实的情景下, 当目标行动本身难以以自然语言表达时, 用户指令可能会含糊不清。 MUG允许进行多轮互动, 这样在看到代理方反应后, 用户可以给代理商进一步指令, 以完善甚至纠正其行动。 这种互动对于改善真实世界使用案例中的地面性能至关重要。 为了调查问题, 我们创建了一套由77 820个人类用户和代理商互动序列组成的新数据集, 在其中20%涉及多轮互动的移动界面上, 由人类用户和代理商互动构成。 为了确定我们的基准, 我们试验了一系列模型变式和评价战略, 包括离线和在线评价战略, 由人的评价和自动模拟器组成。 我们的实验显示, 允许迭代互动大大改进了真实任务完成整个测试数据集的绝对任务, 18 % 和具有挑战性的子调查的31 % 。

1
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员