Salient object detection is subjective in nature, which implies that multiple estimations should be related to the same input image. Most existing salient object detection models are deterministic following a point to point estimation learning pipeline, making them incapable of estimating the predictive distribution. Although latent variable model based stochastic prediction networks exist to model the prediction variants, the latent space based on the single clean saliency annotation is less reliable in exploring the subjective nature of saliency, leading to less effective saliency divergence modeling. Given multiple saliency annotations, we introduce a general divergence modeling strategy via random sampling, and apply our strategy to an ensemble based framework and three latent variable model based solutions to explore the subjective nature of saliency. Experimental results prove the superior performance of our general divergence modeling strategy.
翻译:显性天体探测具有主观性质,这意味着多重估计应该与同一输入图像相关,现有大多数突出天体探测模型在点点估计学习管道后具有确定性,使其无法估计预测分布。虽然存在基于潜伏变异模型的随机预测网络来模拟预测变量,但以单一清洁显性注解为基础的潜在空间在探索显性主观性质方面不那么可靠,导致显性模型的偏差。考虑到多重突出的注解,我们通过随机抽样引入一般差异建模战略,并将我们的战略应用到一个共同基础框架和三个基于潜伏变异模型的解决方案来探索显性主观性。实验结果证明我们总体差异模型战略的优异性。