Auctions are modeled as Bayesian games with continuous type and action spaces. Computing equilibria in auction games is computationally hard in general and no exact solution theory is known. We introduce algorithms computing distributional strategies on a discretized version of the game via online convex optimization. One advantage of distributional strategies is that we do not have to make any assumptions on the shape of the bid function. Besides, the expected utility of agents is linear in the strategies. It follows that if our regularized optimization algorithms converge to a pure strategy, then they converge to an approximate equilibrium of the discretized game with high precision. Importantly, we show that the equilibrium of the discretized game approximates an equilibrium in the continuous game. In a wide variety of auction games, we provide empirical evidence that the method approximates the analytical (pure) Bayes Nash equilibrium closely. This speed and precision is remarkable, because in many finite games learning dynamics do not converge or are even chaotic. In standard models where agents are symmetric, we find equilibrium in seconds. The method allows for interdependent valuations and different types of utility functions and provides a foundation for broadly applicable equilibrium solvers that can push the boundaries of equilibrium analysis in auction markets and beyond.


翻译:拍卖模式以Bayesian游戏为模型,具有连续类型和动作空间。拍卖游戏中的计算平衡一般是计算硬的,没有确切的解决方案理论。我们引入了算法,通过在线convex优化在游戏的离散版本中计算分布战略。分配战略的一个优点是,我们不必对出价功能的形状做出任何假设。此外,代理商的预期效用在战略中是线性。接下来,如果我们的正规优化算法会聚到一个纯战略,然后它们会汇合到离散游戏的近似平衡,并且高度精确。重要的是,我们显示离散游戏的平衡接近连续游戏的平衡。在广泛的各种拍卖游戏中,我们提供了实验性证据,证明该方法接近分析(纯) Bayes Nash均衡的形状。这种速度和精确性是惊人的,因为在许多有限的游戏中,学习动态并不趋近,甚至混乱。在标准模型中,代理商具有对称性,我们在几秒间找到平衡。该方法允许互相依存的估值和不同类别的实用功能,并为广泛适用的平衡市场提供基础,从而推向范围拉动平衡市场。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Convergence of the number of period sets in strings
Arxiv
0+阅读 · 2022年9月28日
Arxiv
0+阅读 · 2022年9月28日
Arxiv
0+阅读 · 2022年9月28日
Arxiv
0+阅读 · 2022年9月27日
Arxiv
79+阅读 · 2022年7月16日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员