Self organizing complex systems can be modeled using cellular automaton models. However, the parametrization of these models is crucial and significantly determines the resulting structural pattern. In this research, we introduce and successfully apply a sound statistical method to estimate these parameters. The method is based on constructing Gaussian likelihoods using characteristics of the structures such as the mean particle size. We show that our approach is robust with respect to the method parameters, domain size of patterns, or CA iterations.
翻译:自组复杂系统可以使用蜂窝自动图案模型来建模。 然而, 这些模型的对称性至关重要, 并在很大程度上决定了由此产生的结构模式。 在此研究中, 我们引入并成功应用了健全的统计方法来估计这些参数。 方法的基础是使用平均粒子大小等结构的特性构建高斯的可能性。 我们显示, 我们的方法在方法参数、 模式域大小或 CA 迭代值方面是稳健的 。