Generalization to out-of-distribution (OOD) data is one of the central problems in modern machine learning. Recently, there is a surge of attempts to propose algorithms that mainly build upon the idea of extracting invariant features. Although intuitively reasonable, theoretical understanding of what kind of invariance can guarantee OOD generalization is still limited, and generalization to arbitrary out-of-distribution is clearly impossible. In this work, we take the first step towards rigorous and quantitative definitions of 1) what is OOD; and 2) what does it mean by saying an OOD problem is learnable. We also introduce a new concept of expansion function, which characterizes to what extent the variance is amplified in the test domains over the training domains, and therefore give a quantitative meaning of invariant features. Based on these, we prove OOD generalization error bounds. It turns out that OOD generalization largely depends on the expansion function. As recently pointed out by Gulrajani and Lopez-Paz (2020), any OOD learning algorithm without a model selection module is incomplete. Our theory naturally induces a model selection criterion. Extensive experiments on benchmark OOD datasets demonstrate that our model selection criterion has a significant advantage over baselines.


翻译:在现代机器学习中,普遍分配(OOOD)数据是一个中心问题。最近,有人试图提出主要以提取变异特性概念为基础的算法。虽然直觉上对何种变异能保证OOD的概括化的理论理解仍然有限,但从理论上看,对什么变异能能保证OOOD的概括化仍然有限,对任意分配(OOOD)数据的概括化显然是不可能的。在这项工作中,我们迈出了第一步,对1的严格和定量定义(OOOOD)做了什么;和2)它的意思是说OOD问题是可以学习的。我们还引入了一个新的扩展功能概念,这个概念的特征是测试领域在培训领域的差异放大到什么程度,因此对变异特性具有定量意义。基于这些,我们证明OODG一般化误差的界限是显而易见的。OOD一般化主要取决于扩展功能。正如Gulrajani和Lop-Paz(2020年)最近指出的那样,任何没有模型选择模块的OOD学习算法都是不完整的。我们的理论自然引导出一个模型选择标准。关于OOOOD数据基准的显著的优势标准。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2022年1月6日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员