We study variants of the mixed finite element method (mixed FEM) and the first-order system least-squares finite element (FOSLS) for the Poisson problem where we replace the load by a suitable regularization which permits to use $H^{-1}$ loads. We prove that any bounded $H^{-1}$ projector onto piecewise constants can be used to define the regularization and yields quasi-optimality of the lowest-order mixed FEM resp. FOSLS in weaker norms. Examples for the construction of such projectors are given. One is based on the adjoint of a weighted Cl\'ement quasi-interpolator. We prove that this Cl\'ement operator has second-order approximation properties. For the modified mixed method we show optimal convergence rates of a postprocessed solution under minimal regularity assumptions -- a result not valid for the lowest-order mixed FEM without regularization. Numerical examples conclude this work.
翻译:我们研究了混合有限元素法(混合FEM)的变体,以及Poisson问题的第一阶系统最低比例元素(FOSLS)的变体,我们用适当的正规化来取代负载,允许使用$H ⁇ -1}美元负载。我们证明,任何捆绑的$H ⁇ -1}美元投影器或成片式常数的投影器,都可以用来确定最低顺序混合FEM resp. FOSLS在较弱规范中的准优化度。提供了建造这种投影器的例子。一个是以加权的 Cl\'ement准中间器的连接为基础。我们证明,这个Cl\'ement操作器具有二级近似近似特性。对于修改过的混合方法,我们在最低常规假设下显示后处理的溶液的最佳趋同率 -- 这个结果对于最低顺序混合FEM没有正规化,对最低顺序混合FEM无效。