Land remote sensing analysis is a crucial research in earth science. In this work, we focus on a challenging task of land analysis, i.e., automatic extraction of traffic roads from remote sensing data, which has widespread applications in urban development and expansion estimation. Nevertheless, conventional methods either only utilized the limited information of aerial images, or simply fused multimodal information (e.g., vehicle trajectories), thus cannot well recognize unconstrained roads. To facilitate this problem, we introduce a novel neural network framework termed Cross-Modal Message Propagation Network (CMMPNet), which fully benefits the complementary different modal data (i.e., aerial images and crowdsourced trajectories). Specifically, CMMPNet is composed of two deep Auto-Encoders for modality-specific representation learning and a tailor-designed Dual Enhancement Module for cross-modal representation refinement. In particular, the complementary information of each modality is comprehensively extracted and dynamically propagated to enhance the representation of another modality. Extensive experiments on three real-world benchmarks demonstrate the effectiveness of our CMMPNet for robust road extraction benefiting from blending different modal data, either using image and trajectory data or image and Lidar data. From the experimental results, we observe that the proposed approach outperforms current state-of-the-art methods by large margins.Our source code is resealed on the project page http://lingboliu.com/multimodal_road_extraction.html.
翻译:陆地遥感分析是地球科学中一项至关重要的研究。在这项工作中,我们侧重于一项具有挑战性的土地分析任务,即从遥感数据中自动提取交通道路,这种数据在城市发展和扩展估计中广泛应用。然而,常规方法要么只是利用航空图像的有限信息,要么仅仅是整合多式信息(如车辆轨迹),因此无法充分认识不受限制的道路。为了便利这一问题,我们引入了一个新型神经网络框架,称为跨Modal Mess Message Propagation Net(CMMPNet Net ),它充分有利于各种模型数据的补充(即航空图像和众源轨迹图 ) 。 具体而言,CMMPNet由两个深度自动编码器组成,用于具体模式代表学习,或者只是集成一个定制的双重增强模块信息模块(如车辆轨迹),因此无法完全识别出不受限制的道路信息。我们引入了一个名为CMMPNet的新式神经元网络,能够有效地利用不同模式-行距流路标的精确度数据,通过我们使用的轨迹-轨道-轨道图解的大型图像和轨道图象学项目,从而观测不同的磁带图像和轨道-轨道-轨道图图图图图。