In distribution compression, one aims to accurately summarize a probability distribution $\mathbb{P}$ using a small number of representative points. Near-optimal thinning procedures achieve this goal by sampling $n$ points from a Markov chain and identifying $\sqrt{n}$ points with $\widetilde{\mathcal{O}}(1/\sqrt{n})$ discrepancy to $\mathbb{P}$. Unfortunately, these algorithms suffer from quadratic or super-quadratic runtime in the sample size $n$. To address this deficiency, we introduce Compress++, a simple meta-procedure for speeding up any thinning algorithm while suffering at most a factor of $4$ in error. When combined with the quadratic-time kernel halving and kernel thinning algorithms of Dwivedi and Mackey (2021), Compress++ delivers $\sqrt{n}$ points with $\mathcal{O}(\sqrt{\log n/n})$ integration error and better-than-Monte-Carlo maximum mean discrepancy in $\mathcal{O}(n \log^3 n)$ time and $\mathcal{O}( \sqrt{n} \log^2 n )$ space. Moreover, Compress++ enjoys the same near-linear runtime given any quadratic-time input and reduces the runtime of super-quadratic algorithms by a square-root factor. In our benchmarks with high-dimensional Monte Carlo samples and Markov chains targeting challenging differential equation posteriors, Compress++ matches or nearly matches the accuracy of its input algorithm in orders of magnitude less time.
翻译:在发行压缩中, 一个用少量代表点来准确总结概率分布值 $\ mathbb{P} 美元 。 近乎最佳的稀薄程序通过从 Markov 链条中取样 $n 美元, 并用$\ lobilde_ mathcal {O} (1/\\\ sqrt{n} 美元与 $\ mathbb{P} 美元 来准确总结概率分布值 $\ mathbb{ p} 。 不幸的是, 这些算法在样本大小中存在四倍或超二次运行运行运行时间值 。 为了解决这个问题, 我们引入了 Compress+, 一种简单的元化程序, 加速任何减瘦动算算, 最多造成四美元误差。 当与 Dwivedi 和 Mackey (2021年) 的二次运行时空内递增量和 美元最高值值值值( 美元 ), 运行时间- 内降量- 内降量- 内降量- 内压- 内程- 内程- 内调值- 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内