In this paper, we propose the deep finite volume method (DFVM), a novel deep learning method for solving %high-order (order $\geq 2$) partial differential equations (PDEs). The key idea is to design a new loss function based on the local conservation property over the so-called {\it control volumes}, derived from the original PDE. Since the DFVM is designed according to a {\it weak instead of strong} form of the PDE, it may achieve better accuracy than the strong-form-based deep learning method such as the well-known PINN, when the to-be-solved PDE has an insufficiently smooth solution. Moreover, since the calculation of second-order derivatives of neural networks has been transformed to that of first-order derivatives which can be implemented directly by the Automatic Differentiation mechanism(AD), the DFVM usually has a computational cost much lower than that of the methods which need to compute second-order derivatives by the AD. Our numerical experiments show that compared to some deep learning methods in the literature such as the PINN, DRM, and WAN, the DFVM obtains the same or higher accurate approximate solutions by consuming significantly lower computational cost. Moreover, for some PDE with a nonsmooth solution, the relative error of approximate solutions by DFVM is two orders of magnitude less than that by the PINN.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
11+阅读 · 2018年7月8日
Arxiv
11+阅读 · 2018年1月18日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员