Privacy and Byzantine resilience are two indispensable requirements for a federated learning (FL) system. Although there have been extensive studies on privacy and Byzantine security in their own track, solutions that consider both remain sparse. This is due to difficulties in reconciling privacy-preserving and Byzantine-resilient algorithms. In this work, we propose a solution to such a two-fold issue. We use our version of differentially private stochastic gradient descent (DP-SGD) algorithm to preserve privacy and then apply our Byzantine-resilient algorithms. We note that while existing works follow this general approach, an in-depth analysis on the interplay between DP and Byzantine resilience has been ignored, leading to unsatisfactory performance. Specifically, for the random noise introduced by DP, previous works strive to reduce its impact on the Byzantine aggregation. In contrast, we leverage the random noise to construct an aggregation that effectively rejects many existing Byzantine attacks. We provide both theoretical proof and empirical experiments to show our protocol is effective: retaining high accuracy while preserving the DP guarantee and Byzantine resilience. Compared with the previous work, our protocol 1) achieves significantly higher accuracy even in a high privacy regime; 2) works well even when up to 90% of distributive workers are Byzantine.


翻译:隐私和拜占庭容错是联邦学习系统中不可或缺的要求。尽管隐私和拜占庭安全已经有了广泛的研究,但同时考虑两个要求的解决方案仍然很少。这是因为在保护隐私和拜占庭强度算法之间协调困难。在这项工作中,我们提出了解决这个双重问题的方法。我们使用差分隐私随机梯度下降(DP-SGD)算法进行隐私保护,然后应用我们的拜占庭容错算法。我们注意到,虽然现有的工作都遵循这一总体方法,但没有对DP和拜占庭容错之间的相互作用进行深入分析,导致了不令人满意的性能。具体来说,对于DP引入的随机噪声,先前的工作努力减少其在拜占庭聚合中的影响。相反,我们利用随机噪声构造一个聚合,有效地拒绝了许多现有的拜占庭攻击。我们提供了理论证明和实证实验,以展示我们的协议的有效性:在保持DP保证和拜占庭容错性的同时保持高精度。与以前的工作相比,我们的协议具有以下特点:1)即使在高隐私条件下,也实现了显着更高的准确性;2)即使有多达90%的分布式工人处于拜占庭状态,仍能很好地工作。

0
下载
关闭预览

相关内容

移动边缘网络中联邦学习效率优化综述
专知会员服务
47+阅读 · 2022年7月9日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
专知会员服务
161+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月4日
Arxiv
0+阅读 · 2023年6月3日
Arxiv
0+阅读 · 2023年6月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员