In this paper, we survey the 40 univariate Laplace goodness-of-fit tests currently available in the literature. We provide a brief description of each test, and we include an expression of their test statistic. An empirical power comparison of the 40 tests is carried out using Monte Carlo simulations, with the sample sizes $n = 20, 50, 100, 200$, the significance levels $\alpha = 0.01, 0.05, 0.10$, and 400 alternatives comprising a variety of asymmetric and symmetric light/heavy-tailed distributions. Aside from the unmatched size of our study, the main contribution is the proposal of an innovative design for the selection of alternatives. The 400 alternatives are evenly divided into 20 classes, each of them corresponding to 20 alternatives of a specific family of distributions with the appropriate parameter chosen to cover the whole range of power curves. An analysis of the results leads to a recommendation of the best tests for different types of alternatives. A real-data example is also presented, where the Laplace tests are applied to the weekly log returns of the AMZN stock over a recent five-year period. Complete tables for the empirical power results are provided in the appendices.
翻译:在本文中,我们调查了文献中现有的40种单一亚利沙特Laplace优异分布式测试。我们提供了每项测试的简单描述,并包含了测试统计数据的表达。对40种测试进行了实验力比较,使用蒙特卡洛模拟模型对40种测试进行了实验力比较,样本大小为20、50、100、200美元,重量值为20美元=20、50、100、200美元,重量值=0.01、0.05、0.10美元,以及400种替代品,包括各种不对称和对称光/重尾发式。除了研究的不相称大小外,我们的主要贡献是提出了选择替代品的创新设计建议。400种替代品被平均分为20个类别,每种类别相当于特定分布系列的20种替代品,并选择了涵盖整个电力曲线范围的适当参数。对结果的分析导致建议对不同类型替代品进行最佳测试。还提出了一个真实数据实例,其中对AMZN股票的每周日志回报进行了拉比测试,最近五年的年提供了一个附录。